Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gepard:projects [2016-03-11 20:54]
jscheiber [Immission Simulator for the Austrian City of Salzburg]
gepard:projects [2022-03-10 21:21] (current)
CS [SIMUL_TR - Real-time Simulator on Parallel Computers]
Line 5: Line 5:
 ===== Intelligent Solutions ===== ===== Intelligent Solutions =====
  
-A project can be called innovative when no comparable system exists, and it can be classified as very challenging when even the client is not sure if the solution will be possible. More than a dozen of projects carried out by GEPARD were innovative and challenging. And all of them were successfully completed (see selected projects below).+A project can be called innovative if no comparable system exists, and it can be classified as challenging if even the client is not sure if solution will be possible. More than a dozen of projects carried out by GEPARD were innovative __and__ challenging. And all of them were successfully completed (see selected projects below).
  
 GEPARD has a long-term reputation for finding a solution to really challenging problems. This reputation has already raised a number of technically and scientifically highly interesting and innovative projects. But also 'standard' developments took benefit from the creative approach of the team. GEPARD has a long-term reputation for finding a solution to really challenging problems. This reputation has already raised a number of technically and scientifically highly interesting and innovative projects. But also 'standard' developments took benefit from the creative approach of the team.
-<WRAP 406px+ 
-{{ :gepard:application_fields_gepard.gif?nolink|Interdisciplinary projects}}+<WRAP 380px
 +{{ :gepard:application_fields_gepard.gif?nolink&280|Interdisciplinary projects}}
 </WRAP> </WRAP>
 <WRAP clear></WRAP> <WRAP clear></WRAP>
-  + 
-\\ +===== Overview ===== 
-|<520px 251px - >| + 
-^Image Processing Projects                  ^Simulation Projects  +<WRAP 100%> 
-|[[#Space Contracts for ESA and EUMETSAT|Space Contracts ESA & EUMETSAT]]  |[[#Factory Process Simulation]]  +|<600px 300px - >| 
-|[[#Other Satellite Image Processing]]      |[[#Hardware-in-the-loop Simulation]]  +^ Image Processing Projects                                                 ^ Simulation Projects                     
-|[[#Industrial Vision Systems]]             |[[#Environment Pollution Modelling]]  |+| [[#Space Contracts for ESA and EUMETSAT|Space Contracts ESA & EUMETSAT]]  | [[#Factory Process Simulation]]         
 +| [[#More Satellite Image Meteorology]]                                     | [[#Hardware-in-the-loop Simulation]]    
 +| [[#CineSat - Product Development]]                                        | [[#Environmental Pollution Modelling]]  | 
 +| [[#Remote Sensing]]                                                                                               | 
 +| [[#Industrial Vision Systems]]                                            |                                         | 
 +</WRAP> 
  
 <WRAP pagebreak /> <WRAP pagebreak />
 +<hidden -open **Project list**>
 +\\
 +  * **[[#Space Contracts for ESA and EUMETSAT]]**
 +    * [[#Parallel Computing Demonstrator for Space Applications]]
 +    * [[#Meteosat Image Rectification and Display]]
 +    * [[#First Real-time Wind Computer]]
 +    * [[#Meteosat-5 Lens Correction Software]]
 +    * [[#Meteosat-6 Anomaly Correction - The Software Glasses]]
 +    * [[#Automatic Satellite Image Analysis]]
 +
 +  * **[[#More Satellite Image Interpretation]]**
 +    * [[#Automatic Identification of Conceptual Models]]
 +    * [[#Identification of Stratiform and Convective Cloudiness]]
 +
 +
 +  * **[[#CineSat - Product Development]]**
 +    * [[https://www.cinesat.com/|CineSat Website]]
 +    * [[https://www.cinesat.com/cinesat:highlights|Top 30 Highlights]]
 +    * [[https://www.cinesat.com/cinesat:feature_list|Top 300 Features]]
 +
 +  * **[[#Remote Sensing]]**
 +    * [[#Forest Damage Classification from Airborne Images]]
 +    * [[#Forest Damage Classification from Landsat Imagery]]
 +    * [[#Aerosole Mapping with LIDAR]]
 +
 +  * **[[#Industrial Vision Systems]]**
 +      * [[#Video Analysis of Body and Limb Movement]]
 +      * [[#High-speed Quality Control of Plastic Tube Prints]]
 +      * [[#Feasibility Analysis and System Design of Vision Systems]]
 +
 +  * **[[#Factory Process Simulation]]**
 +    * [[#'Dream Factory' at the Hannover Industrial Fair]]
 +    * [[#Production Line Optimization for Philips Monitor Tubes]]
 +    * [[#SIMUL_TR - Real-time Simulator on Parallel Computers]]
 +    * [[#Steam Power Plant Simulation and Optimization]]
 +
 +
 +  * **[[#Hardware-in-the-Loop Simulation]]**
 +    * [[#Award Winning Test Bed for Automatic Gear Control in VW Cars]]
 +    * [[#Real-time Controller Hardware for a Flight Centrifuge]]
 +    * [[#Hardware-in-the-Loop Simulator for VOEST Alpine]]
 +
 +
 +  * **[[#Environment Pollution Modelling]]**
 +    * [[#Immission Simulation Campaign for a Single Power Plant]]
 +    * [[#Design for the Parallel Implementation of an Immission Simulator]]
 +    * [[#Immission Planning Tool for the Austrian City of Salzburg]]
 +</hidden>
 +
    
 +<WRAP pagebreak />
 ===== Space Contracts for ESA and EUMETSAT ===== ===== Space Contracts for ESA and EUMETSAT =====
  
 <WRAP left 235px> <WRAP left 235px>
-{{ :pub:sat:meteosat8.jpg?nolink&180 |Meteosat-8 Satellite}}+{{ :gepard:meteosat8.jpg?nolink&180 |Meteosat-8 Satellite}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
- +\\ 
 </WRAP> </WRAP>
  
-All ESA / EUMETSAT contracts described below comprise the development of various sophisticated and innovative image processing systems. They have been implemented on parallel computer and standard UNIX systems.+All ESA / EUMETSAT contracts described below comprise the development of various sophisticated and innovative image processing systemsimplemented on parallel computers and standard UNIX systems.
  
 Several products have been derived from the space contracts. For instance, the CineSat display software for Sun stations, and the initial version of the CineSat Nowcast system for short-range weather forecasting. Several products have been derived from the space contracts. For instance, the CineSat display software for Sun stations, and the initial version of the CineSat Nowcast system for short-range weather forecasting.
Line 39: Line 97:
  
 <WRAP left 235px> <WRAP left 235px>
-{{ :gepard:transputer.jpg?nolink&200 |Transputer}}+{{:gepard:transputer.jpg?nolink&190 |Transputer}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
-  
-  
-  
 </WRAP> </WRAP>
  
Line 51: Line 106:
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
 ESOC, European Space Operations Centre, Impuls ESOC, European Space Operations Centre, Impuls
-    +\\ 
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
 Transputer based prototype to demonstrate the benefit of parallel computing technology to space applications. The selected demonstrator applications included high-speed satellite image display and real-time satellite image processing. Transputer based prototype to demonstrate the benefit of parallel computing technology to space applications. The selected demonstrator applications included high-speed satellite image display and real-time satellite image processing.
Line 68: Line 124:
 Development of the world's fastest parallel display system for high resolution Meteosat images (5,000 x 5,000 pixels). Interactive film-like animation facility for hundreds of these images including real-time zoom and pan and color manipulation even during running animation.  Development of the world's fastest parallel display system for high resolution Meteosat images (5,000 x 5,000 pixels). Interactive film-like animation facility for hundreds of these images including real-time zoom and pan and color manipulation even during running animation. 
  
-The developed TAW (Transputer augmented workstation) also included real-time Meteosat image rectification, i.e. the geographical correction of raw satellite images in the ESA ground segment prior to dissemination to end-users. New rectification algorithms have been developed, tested, and optimized for real-time performance.+The developed TAW (Transputer augmented workstation) also included real-time Meteosat image rectification, i.e. the geographical correction of raw satellite images in the ESA ground segment before disseminating them to all national weather services in Europe and Africa. New rectification algorithms have been developed, tested, and optimized for real-time performance.
         
 +<WRAP pagebreak />
 <wrap red>Major Achievement:</wrap> <wrap red>Major Achievement:</wrap>
-The world´s fastest digital image display system for high-resolution images, and a new real-time image resampling method tailored to the content of meteorological images.+The world´s fastest digital image display system for high-resolution images, and a new real-time image resampling method that significantly improved the quality of meteorological satellite images.
    
  
-==== 1993 - First Real-time Wind Computer ====+==== First Real-time Wind Computer ====
  
  
Line 80: Line 137:
 {{:gepard:mini_wv.gif?nolink&220 |Water Vapor Wind Computer}} {{:gepard:mini_wv.gif?nolink&220 |Water Vapor Wind Computer}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
- +
 </WRAP> </WRAP>
         
Line 91: Line 148:
     
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Development of the first real-time wind computer for the European Space Operation Centre, including a full automatic quality control of the computed wind information+Development of the first real-time wind computer for the European Space Operation Centre.
    
 <WRAP clear></WRAP> <WRAP clear></WRAP>
  
-Additional software development for several meteorological products that are derived from image data, like Upper Tropospheric Humidity, Total Column Water, Wind Trajectories, etc. +With every incoming new satellite image, the system computed the movement of clouds and cloud structures from the previous to the current image - the so-called Cloud Motion Winds. We developed and delivered the 
-     +  * new pattern tracking algorithms to speed up computation by a factor of 16  
 +  * a statistical toolbox for the automated quality control of these winds 
 +  * additional software for several meteorological products derived from satellite data, like Upper Tropospheric Humidity, Total Column Water, Wind Trajectories, etc. 
 +  * the parallel computing hardware to run all this in real-time 
 + 
 <wrap red>Major Achievements:</wrap> <wrap red>Major Achievements:</wrap>
-For the first time ever, meteorologists had half-hourly cloud motion winds available for the full Meteosat Earth disk. The delivered system computed the information in 10 minutes (!) compared to the 4 computing hours of the previously existing wind processing.  +For the first time ever, meteorologists had half-hourly cloud motion winds available for the full Meteosat Earth disk. The delivered system computed the information in 10 minutes (!) compared to the 4-6 computing hours of the previously existing wind processing on the ESOC mainframe computer.  
 The speed-up could be achieved by utilizing a specifically designed parallel computer platform (i860 / transputer). A surplus factor of 16 in speed could be gained by new and highly efficient mathematical algorithms.   The speed-up could be achieved by utilizing a specifically designed parallel computer platform (i860 / transputer). A surplus factor of 16 in speed could be gained by new and highly efficient mathematical algorithms.  
-The system also features a fully automatic quality control of the computed wind field+The system also features a fully automatic quality control of the computed wind fields
  
 <WRAP clear></WRAP>     <WRAP clear></WRAP>    
Line 106: Line 167:
 ==== Meteosat-5 Lens Correction Software === ==== Meteosat-5 Lens Correction Software ===
         
-<wrap red>Project:</wrap> +<wrap red>Project:</wrap> M5LENS - Meteosat-5 Lens Correction Software 
-M5LENS - Meteosat-5 Lens Correction Software +<wrap red>Partner:</wrap> ESOC, European Space Operations Centre
- +
-<wrap red>Partner:</wrap> +
-ESOC, European Space Operations Centre+
         
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
Line 119: Line 177:
 ==== Meteosat-6 Anomaly Correction - The Software Glasses ==== ==== Meteosat-6 Anomaly Correction - The Software Glasses ====
  
-The Meteosat-6 radiometer is severely affected by an irregular anomaly of unknown source. Two of the three image channels have their brightness levels distorted from line to line in an unpredictable way. The temperatures measured by this satellite differ up to 25% (more than 15 degree Celsius) from ground measurements and the reference satellite.+The Meteosat-6 radiometer is severely affected by an irregular anomaly of unknown sources. Two of the three image channels have their brightness levels distorted from line to line in an unpredictable way. The temperatures measured by this satellite differ up to 25% (which makes a difference of more than 15° Celsius) in comparison to ground measurements and to the second operational satellite Meteosat-5.
  
 GEPARD was the only company to successfully propose a solution for the on-ground correction of the Meteosat-6 radiometer anomaly.  GEPARD was the only company to successfully propose a solution for the on-ground correction of the Meteosat-6 radiometer anomaly. 
  
-<WRAP box+<WRAP tb_none 100%
-<WRAP column 30%> +|<100% 36% 28% 36% >| 
-<wrap lo>**Left half:**  +<wrap lo>**Left half**:\\ Meteosat-6 infra-red image with a radiometer anomaly. The image is nearly ok at the South pole, but becomes brighter in the North.\\ In this example, the defect Meteosat-6 sensor measured a sea surface temperature of only 5 degree Celsius in the Mediterranian sea during the summer season !</wrap>  | <WRAP m:8px>    {{ :gepard:m6c.gif?150&direct |Meteosat-6 Anomaly Correction}}    </WRAP>  | <wrap lo>**Right half**:\\ Corrected Meteosat-6 Image.\\ The correction does not affect the usual daily temperature variations.\\ The anomaly is completely irregular. Neither the shape of the North-South anomaly nor the existence of an anomaly could be predicted from one image to the next.</wrap>  |
-Meteosat-6 infra-red image with a radiometer anomaly.  +
-The image is nearly ok at the South pole, but becomes brighter in the North.  +
-In this example Meteosat-6 measured a sea surface temperature of 5 degree Celsius in the Mediterranian sea during the summer season !</wrap>+
 </WRAP> </WRAP>
-<WRAP column 30%> 
-{{ :gepard:m6c.gif?direct&190 |Meteosat-6 Anomaly Correction}} 
-</WRAP> 
-<WRAP column 30%> 
-<wrap lo>**Right half:**  
-Corrected Meteosat-6 Image.  
-The correction does not affect the usual daily temperature variations.  
-The anomaly is completely irregular. Neither the shape of the North-South anomaly nor the existence of an anomaly could be predicted from one image to the next.</wrap> 
-</WRAP> 
-</WRAP> 
-<WRAP clear></WRAP> 
  
 <WRAP box> <WRAP box>
Line 154: Line 198:
         
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
-ESOC, European Space Operations Centren and   +ESOC, European Space Operations Centre and EUMETSAT
-EUMETSAT, European Organisation for the Exploitation of Meteorological Satellites+
         
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-After several months of international investigation it turned out that the source of the Meteosat-6 anomaly could not be identified and that there is no proposal for an on-board fix of this problem. +After several months of international investigation it turned out that the sources of the Meteosat-6 anomaly could not be identifiedand that there was no proposal for an on-board fix of this problem. 
 Based on some very promising preliminary tests at GEPARD, ESA commissioned us with a feasibility study for the on-ground correction of the anomaly. Based on some very promising preliminary tests at GEPARD, ESA commissioned us with a feasibility study for the on-ground correction of the anomaly.
  
-Within a few months, we took the steps from a successful offline demonstrator prototype to an operationalreal-time correction facility, smoothly integrated into the EUMETSAT ground segment.+Within a few months, we took the steps from a successful offline demonstrator prototype to an operational real-time correction facility, perfectly integrated into the ESOC and EUMETSAT ground segments.
     
-<wrap red>Major Achievement:</wrap> +<WRAP pagebreak /> 
-GEPARD developed algorithms and software that corrected the unpredictable radiometer anomaly of Meteosat-6 in real-time and __with excellent accuracy__ - compared to a reference satellite.+<wrap red>Major Achievements:</wrap> 
 +We developed algorithms and software that corrected the unpredictable radiometer anomaly of Meteosat-6 in real-time and __with excellent accuracy__ - compared to a reference satellite.
  
   * **Accuracy:** corrected Meteosat-6 images have a quality comparable to Meteosat-5   * **Accuracy:** corrected Meteosat-6 images have a quality comparable to Meteosat-5
Line 170: Line 214:
  
 <WRAP box round 525px> <WRAP box round 525px>
-End users did not recognize any changes in product quality when operation switched from Meteosat-5 to Meteosat-6 - although the raw images provided by Meteosat-6 were severely corrupted.+End users did not recognize any changes in product quality when operation switched from Meteosat-5 to Meteosat-6 - although the raw images provided by the satellite were severely corrupted.
  
 **Even better:** The M6C correction method turned out to be a valuable quality control tool for satellite imagery. It also revealed a slight anomaly problem with Meteosat-5. **Even better:** The M6C correction method turned out to be a valuable quality control tool for satellite imagery. It also revealed a slight anomaly problem with Meteosat-5.
Line 183: Line 227:
 {{:gepard:satrep_nwp.gif?direct&220 |Fuzzy Fusion of Image & Models}} {{:gepard:satrep_nwp.gif?direct&220 |Fuzzy Fusion of Image & Models}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
-  
 </WRAP> </WRAP>
  
Line 192: Line 235:
 ESTEC, European Space Research and Technology Centre & ESTEC, European Space Research and Technology Centre &
 ZAMG, Zentralanstalt für Meteorologie und Geodynamik (Central Austrian Met. Office) ZAMG, Zentralanstalt für Meteorologie und Geodynamik (Central Austrian Met. Office)
-    +\\ 
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Algorithm development for the combined analysis of satellite images, numerical model, and measurement data. The approach is based on fuzzy logic methods and can also handle the time and position offsets between the various data sources. The software demonstrator included the successful testing of this approach with Meteosat infra-red images and numerical weather prediction models.+Algorithm research and development for the combined analysis of satellite images, numerical models, and measurement data. The approach is based on fuzzy logic methods and can also handle the offsets in time and position between the various data sources. The software demonstrator included the successful testing of this approach with Meteosat infra-red images and numerical weather prediction models.
         
 <wrap red>Major Achievement:</wrap> <wrap red>Major Achievement:</wrap>
 The developed approach forms now the basic framework for a real-time system that automatically identifies weather phenomena and cloud configurations. The developed approach forms now the basic framework for a real-time system that automatically identifies weather phenomena and cloud configurations.
 +:GO: Follow-up project [[#Automatic Identification of Conceptual Models]]
  
 <WRAP clear></WRAP> <WRAP clear></WRAP>
  
 <WRAP pagebreak /> <WRAP pagebreak />
- +===== More Satellite Image Interpretation =====
-===== Other Satellite Image Processing ===== +
- +
- +
-==== Forest Damage Classification from Airborne Images ==== +
- +
-<WRAP left 235px> +
-{{:gepard:forest_class_airborne.jpg?direct&220 |Forest Damage Classification (Airborne Images)}} +
-<WRAP clear></WRAP> +
-  +
-  +
-</WRAP> +
-     +
-<wrap red>Project:</wrap> +
-FOREST-AIR - Forest Damage Classification from Airborne Images +
- +
-<wrap red>Partner:</wrap> +
-ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment Protection) +
-     +
-<wrap red>Description:</wrap> +
-Survey and prototype implementation of algorithms suitable for the automatic classification of forest damages from airborn infra-red images, and of image pre-processing techniques that assist the human interpreter. +
-  +
-<WRAP clear></WRAP> +
- +
-==== Forest Damage Classification from Landsat Imagery ==== +
-     +
-<WRAP left 235px> +
-{{:gepard:forest_class_landsat.gif?nolink&220 |Forest Damage Classification (Landsat)}} +
-</WRAP> +
- +
-<wrap red>Project:</wrap> +
-FOREST-SAT - Forest Damage Classification from Landsat Imagery +
- +
-<wrap red>Partner:</wrap> +
-ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment Protection) +
-     +
-<wrap red>Description:</wrap> +
-Operational software for multispectral Landsat image classification on a parallel computer platform. +
-   +
-<WRAP clear></WRAP> +
- +
-<WRAP pagebreak />+
  
    
Line 256: Line 260:
 {{:gepard:satrep_nwp.gif?direct&220 |Fuzzy Fusion of Image & Models}} {{:gepard:satrep_nwp.gif?direct&220 |Fuzzy Fusion of Image & Models}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
-<wrap lo>Fuzzy Fusion of Image & Models</wrap>+<wrap lo>Fuzzy Fusion of Images & Models</wrap>
 <WRAP clear></WRAP> <WRAP clear></WRAP>
    
Line 269: Line 273:
  
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
-BMWV, Bundesministerium für Wissenschaft und Verkehr (Austrian Federal Ministry of Science and Transport) & +ZAMG, Zentralanstalt für Meteorologie und Geodynamik (National Austrian Met. Office) 
-ZAMG, Zentralanstalt für Meteorologie und Geodynamik (Central Austrian Met. Office)+ 
 +The project has been partially funded by the Austrian Ministry of Science and Transport. More than 50% financed by own resources.
         
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Method and system development for the joint automatic analysis of Meteosat images and numerical weather prediction modelsThe main focus in this project was on image analysis, in particular the identification of cloud texturesstructures and configurations, and the recognition of special cloud objects like convective cellsS-formswavesspiral structuresfibresetc+The project aimed at the automated real-time detection of so-called Conceptual ModelsYou can think of Conceptual Models as typical weather phenomenaas sort of 'developing life forms' in the atmospherelike e.g. cold fronts, occlusions, jet fibres, front intensification by jet crossing, and many more.  
 +They are described by their appearance in the satellite datatheir typical features in numerical weather model parameterstheir formsizeintensitylife-cycle, accompanying weather, and their potential risks to e.g. air traffic
  
-The project has been partially funded by the Austrian Federal Ministry of Science and Transport. Two other projects contributed to this development - ASIA and CCELLS. More than 50% of the project has been financed from own resources in view of future sales. +The MISSION system identified Conceptual Models by the joint analysis of patterns in Meteosat images, numerical weather prediction models, and observation data, following a three step approach:
-     +
-<wrap red>Major Achievement:</wrap> +
-The system is currently in operational use at ZAMG and other weather services for the automatic real-time detection of so-called 'conceptual models'. CMs are a classification of weather phenomena in terms of their appearence in satellite imagery and associated numerical weather prediction parameters. 30-40 models are currently automatically identified every 15 minutes.+
  
 +<WRAP clear/>
 +  * **Image pattern recognition**, in particular the identification of cloud textures, structures and configurations, and recognition of special cloud objects like convective cells, S-forms, waves, spiral structures, fibres, etc.
 + 
 +  *** Topology features in the 2D-parameter fields** of weather forecast data, like ridges, local maxima, convex or concave curvature, ...
 +
 +  * **Combination of features** derived from the various data sets in a very flexible and robust classification scheme using the basic framework for the __fuzzy logic fusion__ of image data and numerical model data that had been developed in the [[#Automatic Satellite Image Analysis|ASIA]] project.
 +
 +<wrap red>Major Achievements:</wrap>
 +The system is currently in operational use at ZAMG and other weather services for the automatic real-time detection of Conceptual Models. 30 to 40 types of models are being automatically identified with every new set of satellite images every 15 minutes.
 +
 +See examples on [[http://www.zamg.ac.at/docu/Manual/SatManu|ZAMG SatManu]] [[http://www.zamg.ac.at/docu/Manual/SatManu/main.htm?/docu/Manual/SatManu/Short/JeIn/short.htm|ZAMG: Example]]
 <WRAP clear></WRAP> <WRAP clear></WRAP>
  
-<WRAP pagebreak />+Two other projects contributed to this development: [[#Automatic Satellite Image Analysis|ASIA]] and [[#Identification of Stratiform and Convective Cloudiness|CCELLS]]. 
 + 
 + 
  
  
Line 299: Line 316:
 DWD, Deutscher Wetterdienst (German Weather Service) DWD, Deutscher Wetterdienst (German Weather Service)
         
 +<WRAP clear/>
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Two projects concerning the feasibility analysis and prototype implementation of methods for the automatic detection of convective cloud cells. Results have been incorporated in the CineSat software.+Two projects concerning the feasibility and prototype implementation of methods for the automatic detection of convective cloud cells (thunderstorms) and the automated description of their properties and development trends like cell height, cell top temperature, cooling rate, cell area, expansion rate, movement speed, and direction 
 +Results have been incorporated in the CineSat software.
  
 +<wrap red>Major Achievement:</wrap>
 +The real-time detection of thunderstorm cells and in particular describing their properties and trends turned out to be extremely useful in Air Traffic Control and for early disaster warning for construction sites and tourist areas. 
 +
 +Rrom the satellite image alone, a flight meteorologist may see several similar cloud cells over Sicily, but with the CCELLS software he/she can instantly discriminate intensifying and decaying cells, and spot their movement and development trends, and therefore, can issue much better and more targeted warnings. 
 <WRAP clear></WRAP> <WRAP clear></WRAP>
      
-===== CineSat - Product Development =====+<WRAP pagebreak /> 
 +==== CineSat - Product Development ====
  
 <WRAP left 235px> <WRAP left 235px>
    
-{{:pub:csicon156.gif?nolink |CineSat}}+{{:gepard:csicon156.gif?nolink |CineSat}}
 <WRAP clear></WRAP>  <WRAP clear></WRAP> 
    
    
    
-{{:gepard:cinesat_v1.gif?direct&225 |CineSat V1.0}}+{{:gepard:cs_nowcasting_screenshot.jpg?direct&225 |CineSat Nowcasting}} 
 +<WRAP clear></WRAP> 
 +</WRAP> 
 +  
 +<wrap red>Project:</wrap> 
 +CineSat - Inhouse product development of a 'Satellite Cinema' including interactive and automated real-time weather analysis and short range weather forecasting. 
 + 
 +<wrap red>Description:</wrap> 
 +CineSat is a powerful, high-performance, and feature-rich meteorological software suite for satellite image analysis, display, and processing. It features a real-time weather analysis and forecasting module based on satellite imagery, a high-performance and highly-configurable Automatic Product Extraction Server with a number of unique functions, and a strong and fast data display. 
 +<WRAP clear></WRAP> 
 +== Highlights: == 
 +  * Advanced real-time image analysis and nowcasting 
 +  * Cloud development and convective cell analysis 
 +  * Prediction of cloud motion and future satellite images 
 +  * Seamless full Earth mosaics and RGB composites 
 +  * Motion-interpolated AVI and MPEG Movies 
 +  * Universal Image Browser at breathtaking speed 
 +  * Convenient and fast handling of full size satellite images 
 +  * High-speed animation with interactive zoom and pan 
 +  * Map Editor with 60+ adjustable projections 
 +  * GIS overlays, Front Editor, Drawing Tool, Color tool, Image Converter 
 +  * Reads and converts all MSG and many other data formats 
 +  * Flexible RGB Color Composites of any satellite channels 
 +  * Advanced pixel inspection, statistics, 3D pixel view 
 +  * Full WMO station model with more than 250 user parameters 
 +  * Simultaneous zoom and scroll in multiple image windows 
 +  * Fast animation of more than a Gigabyte of image data 
 +  * Interactive zoom and pan even during running animation 
 +  * AVI and MPEG movies of selected image regions 
 +  * Automatically update your website with new animations 
 +  * Easy set-up of automated processing chains 
 +  * Integrate own scripts, macros, programs, menu items 
 +  * Server roles, multi-level and update-resistant configurations 
 +  * Open interfaces, Research Testbed 
 +  * Full 8 / 10 / 12 / 16-bit and 24-bit True Color Processing 
 +  * Highly accurate and validated methods 
 +  * Advanced data householding and clean-up, and system monitoring 
 +  * Very stable and proven system performance 
 +<WRAP pagebreak /> 
 +CineSat had started as an in-house research and development project, initiated by customer requests for an interactive and automated high-performance satellite image interpretation system, designed to best possibly assist the forecaster's daily operational work. It soon became a valuable platform for researchers, because of its powerful display and scripting facility, and its unique nowcasting tools.  
 + 
 +With start of Meteosat 2nd Generation in 2003, CineSat became a well appreciated standard software solution for real-time processing of and product generation from meteorological data distributed via EUMETCast.  
 + 
 + 
 +:GO: See CineSat's [[https://www.cinesat.com/cinesat:feature_list|Top 300 Features]] 
 + 
 + 
 + 
 + 
 +<WRAP pagebreak /> 
 +===== Remote Sensing ===== 
 + 
 +These remote sensing projects have been realized by GEPARD founders shortly before starting up the company. The end-user was ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment Protection).   
 +ÖBIG provided the data, resources, and project management. 
 + 
 + 
 +==== Forest Damage Classification from Airborne Images ==== 
 + 
 +<WRAP left 235px> 
 +{{:gepard:forest_class_airborne.jpg?direct&220 |Forest Damage Classification (Airborne Images)}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
    
    
 +</WRAP>
 +   
 +<wrap red>Project:</wrap>
 +FOREST-AIR - Forest Damage Classification from Airborne Images
 +
 +<wrap red>Partner:</wrap>
 +ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment Protection)
 +   
 +<WRAP clear/>
 +<wrap red>Description:</wrap>
 +Survey and prototype implementation of algorithms suitable for the automatic classification of trees and vegetation damages from airborn infra-red images - including image pre-processing, feature extraction, image segmentation, and classification.
    
 +<WRAP clear></WRAP>
 +
 +==== Forest Damage Classification from Landsat Imagery ====
 +   
 +<WRAP left 235px>
 +{{:gepard:forest_class_landsat.gif?nolink&220 |Forest Damage Classification (Landsat)}}
 +\\
 +
 +
 </WRAP> </WRAP>
- +
 <wrap red>Project:</wrap> <wrap red>Project:</wrap>
-CineSat Inhouse product development of a Satellite Cinema+FOREST-SAT - Forest Damage Classification from Landsat Imagery
  
 +<wrap red>Partner:</wrap>
 +ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment Protection)
 +   
 +<WRAP clear/>
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-CineSat is a powerful, high-performance, and feature-rich meteorological software suite for satellite image analysis, display, and processing. It features a real-time weather analysis and forecasting module based on satellite imagery, a high-performance and highly-configurable Automatic Product Extraction Server with a number of unique functions, and a strong and fast data display.+Operational software for multi-spectral Landsat image classification to identify and monitor forest damages based on methods previously developed for airborne infra-red images
  
-25 years ago, CineSat had started as an in-house research and development project, initiated by customer requests for high-performance satellite image interpretation system. Designed to best possibly assist the forecaster's operational routine workWith start of Meteosat 2nd Generation in 2003, CineSat became well appreciated standard software solution for real-time processing of meteorological data distributed via EUMETCast.+We started by computing large set of scaleand rotation-invariant image features from each spectral channel of the Landsat Thematic MapperThese more than 70 feature fields per image were then reduced to handful of most significant features by principal component analysis. 
 +This selected feature set was used as input to cluster analysis and forest damage classification.
  
 +We implemented these methods on a parallel computing hardware to significantly speed up processing. This allowed to improve the classification by evaluating many more data sets. 
 +
 +<WRAP highlightbox 90%>
 +This was one of the first applications on a parallel computing system in Europe.
 +</WRAP>
 +
 + 
 <WRAP clear></WRAP> <WRAP clear></WRAP>
 +
 +
 +==== Aerosole Mapping with LIDAR ====
 +
 +<wrap red>Project:</wrap>
 +LIDAR - Aerosole Mapping
 +
 +<wrap red>Partner:</wrap>
 +ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment)
 +
 +<wrap red>Description:</wrap>
 +LiDAR (Light Detection and Ranging) is an active remote sensing system using a pulsed laser. The reflected light returns to the LiDAR sensor where it is recorded. 
 +At ÖBIG, airborne laser scanning data were used to map and monitor aerosole distribution and transport. The project focussed on the processing and correction of the raw data, and the generation of graphical products of the measured aerosoles.
  
 <WRAP pagebreak /> <WRAP pagebreak />
Line 372: Line 500:
 Feasibility study and design of a system for real-time quality control of the color printing on plastic tubes (e.g. for tooth paste tubes). Feasibility study and design of a system for real-time quality control of the color printing on plastic tubes (e.g. for tooth paste tubes).
  
-White tubes are being heated over a flame and then pressed against a high-speed printing wheel which applies color prints on two tubes per second. The main challenge in this project was that the color printings have to be controlled with an accuracy of about 1/10 mm while the tubes are deforming (cooling down) during rotation in front of a line scan camera. The line camera produces about 18 MB of RGB image data per tube. This means that 36 MB of randomly deformed image data had to be controlled with pixel accuracy within a second).+White tubes are being heated over a flame and then pressed against a high-speed printing wheel that applies color prints on two tubes per second. The main challenge in this project was that the color printings have to be controlled with an accuracy of about 1/10 mm while the tubes are deforming (cooling down) during rotation in front of a line scan camera. Per second, 36 MB of randomly deformed image data had to be controlled with pixel accuracy.
     
 <WRAP clear></WRAP> <WRAP clear></WRAP>
Line 383: Line 511:
 {{:gepard:bv.gif?direct&220 |Machine Vision Applications}} {{:gepard:bv.gif?direct&220 |Machine Vision Applications}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
-  +\\  
- +\\ 
    
 </WRAP> </WRAP>
  
 <wrap red>Projects:</wrap> <wrap red>Projects:</wrap>
-Several Feasibility Analysis and System Designs of Vision Systems+A number of customer specific feasibility studies and system designs for the automatic quality control of various products, like cables, wood, electronic and electric parts and devices, metallic vehicle parts, medical images, prints on product surfaces, textiles, etc.
  
-<wrap red>Description:</wrap> +<wrap red>Partners:</wrap> 
-A number of customer and application specific feasibility studies and system designs for the automatic quality control of various productslike cables, wood, electronic and electric parts and devices, metallic vehicle parts, medical images, prints on product surfaces, textiles, etc.+hemaOmron
  
 <WRAP clear></WRAP> <WRAP clear></WRAP>
  
  
 +<WRAP pagebreak />
 ===== Factory Process Simulation ===== ===== Factory Process Simulation =====
  
-==== 1989 - 'Dream Fabric' at the Hannover Industrial Fair ====+==== 'Dream Factory' at the Hannover Industrial Fair ====
  
 <WRAP left 235px> <WRAP left 235px>
-{{:gepard:fabrik.jpg?nolink&220 |Real-time 'Dream-Fabric' Process Visualization}}+{{:gepard:fabrik.jpg?nolink&220 |Real-time 'Dream Factory' Process Visualization}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
    
 </WRAP> </WRAP>
  
-Great echo on GEPARD´s 'Dream Fabric' at the world's biggest industrial fair. Simulation of production processes with real-time interaction features and high-speed, real-world image animation (25 images per secondon a parallel computer+<wrap red>Project:</wrap> 
 +Dream Factory - a prototype demonstrator for simulating and animation of and interacting with production lines 
 + 
 +<wrap red>Partners:</wrap> 
 +hema, SIMUTECH 
 +     
 +<wrap red>Description:</wrap> 
 +Great echo on GEPARD´s 'Dream Factory' at the world's biggest industrial fair, 1989 
 + 
 +The demonstrator was **built on a parallel computer with exceptional display and processing performance** and 
 +  * Could be configured for different production lines consisting of conveyor belts, work places, transport crane, handling robot, forklift, different size and weight of goods, etc 
 +  * Simulated the configured production line by discrete event simulation 
 +  * Solved the differential equations to simulate e.g. the behavior of goods on the transport crane (acceleration, swinging, ...) 
 +  * Accepted real-time user interaction via keyboardjoystick, and analog and digital interfaces 
 +  * Animated the production process with real-world images at 25 images per second 
 +  * Imported real-time images from a video camera and projected the live faces of spectators onto packed goods 
 +  * The user could also take control of the transport crane and move it with a joystick. The challenge was that the goods were not released from the crane before it stopped swinging. 
 + 
 +In the following year, we extended the demonstrator hawith industrial controls and a real handling robot: 
 + 
 +  * Visitors saw the real-world image animation of the simulated production process on screen and small real robot sitting on the table next to the screen. 
 +  * Whenever the goods on a simulated conveyor belt reached the station of the simulated handling robot, the real robot picked up a goody from the table and handed it to a visitor.  
 +  * Halting or slowing down the real robot also stopped or slowed the simulated robot on the animation display, and the goods started to pile up on the conveyor belts, until the whole production came to a halt. 
 + 
 +This setup demonstrated the seamless integration of simulation, animation and reality, and was the start of several hardware-in-the-loop simulation projects for some well-known companies like Volkswagen, VOEST, ...
  
 <WRAP clear></WRAP> <WRAP clear></WRAP>
  
 +<WRAP pagebreak />
 ==== Production Line Optimization for Philips Monitor Tubes ==== ==== Production Line Optimization for Philips Monitor Tubes ====
         
Line 428: Line 582:
         
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Two projects concerning modelling, simulation, animation and optimisation of the monitor and TV tube production lines. The client successfully restructured his manufacturing line according to the results of this optimisation analysis.+Two projects concerning modelling, simulation, animation and optimization of monitor and TV tube production lines. The client successfully restructured his manufacturing lines based on the simulation results.
  
 <WRAP clear></WRAP> <WRAP clear></WRAP>
  
  
-<WRAP pagebreak /> 
  
 ==== SIMUL_TR - Real-time Simulator on Parallel Computers ==== ==== SIMUL_TR - Real-time Simulator on Parallel Computers ====
Line 443: Line 596:
  
 <wrap red>Project:</wrap> <wrap red>Project:</wrap>
-SIMUL_TR - A general purpose, transputer-basedreal-time simulation system+SIMUL_TR - A general purpose, transputer-based real-time simulation system
  
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
Line 452: Line 605:
  
 <WRAP> <WRAP>
-  * continuous models (differential equation systems) +  * Continuous models (differential equation systems) combined with 
-  * discrete simulation (event- and time triggered) +  * Discrete simulation (event- and time triggered) 
-  * implementation on parallel computing hardware +  * Implementation on parallel computing hardware with 
-  * high-speed analogue and digital interfaces +  * Accurate real-time task scheduling 
-  * a real-timereal-world animation facility +  * High-speed analog and digital interfaces 
-  * real-time recording of simulation and IO-data+  * Real-time and real-world animation facility with interactive features 
 +  * Recording of simulation and IO data
 </WRAP> </WRAP>
  
-The simulator can react to digital and analogue inputs in real-time by using external signals as input to the simulation model and outputting digital and analogue signals from the model to an attached device (hardware-in-the-loop simulation).+The simulator can react to digital and analog inputs in real-time by using external signals as input to the simulation model and outputting digital and analog signals from the model to an attached device (hardware-in-the-loop simulation).
  
 Its application ranges from complex factory process simulations, high-performance animation display with 25 images per second, to high-speed test beds (hardware-in-the-loop simulations) for devices. Its application ranges from complex factory process simulations, high-performance animation display with 25 images per second, to high-speed test beds (hardware-in-the-loop simulations) for devices.
  
-The system was used as basis for several customer specific development projects (see below)+<WRAP pagebreak /> 
 +The system has been used as basis for several customer specific projects, like e.g. 
 +  * [[#'Dream Factory' at the Hannover Industrial Fair]] 
 +  * [[#Production Line Optimization for Philips Monitor Tubes]] 
 +  * [[#Award Winning Test Bed for Automatic Gear Control in VW Cars]] 
 +  * [[#Hardware-in-the-Loop Simulator for VOEST Alpine]]
  
 <WRAP clear></WRAP> <WRAP clear></WRAP>
- 
-<WRAP pagebreak /> 
  
  
Line 477: Line 634:
    
 <WRAP clear></WRAP> <WRAP clear></WRAP>
- +\\ 
 {{:gepard:steam-power-plants.jpg?direct&220 |Steam Power Plant Flow Chart}} {{:gepard:steam-power-plants.jpg?direct&220 |Steam Power Plant Flow Chart}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
Line 490: Line 648:
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
 SGP, Simmering-Graz-Pauker SGP, Simmering-Graz-Pauker
 +This project was realized by GEPARD founders shortly before starting the company. We did not manage the project, but contributed all of the optimization algorithms and related software source code.
         
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-The customer had already developed the simulator software for all major components of a steam power plant. Our staff developed the mathematical framework and software that solves all issues when - during the design phase of a new power plant - different components are being plugged together and simulated in order to optimise the efficiency and performance of the projected plant.+The customer had already developed the simulator software for the major components of a steam power plant. We developed the mathematical framework and software to resolve all issues if - during the design phase of a new power plant - different components are being plugged together and simulated in order to optimize the efficiency and performance of the projected plant.
  
-In particular, it solved all zero-search and steady-state problems related to the typical circular flow of water and steam through the component arrangement.+In particular, the software resolved all zero-search, optimization, graph-theoretical, and steady-state problems related to the typical circular flow of water, air and steam through the various modular component arrangements.
  
 <WRAP clear></WRAP> <WRAP clear></WRAP>
Line 512: Line 671:
  
 <wrap red>Project:</wrap> <wrap red>Project:</wrap>
-VW-FTS - Functional Testing System for Automatic Gear Control (1991)+VW-FTS - Function Testing System for Automatic Gear Control (1991)
  
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
Line 522: Line 681:
 <WRAP> <WRAP>
 <WRAP left 220px> <WRAP left 220px>
-{{:gepard:microtronic-91.jpg?nolink&220 |Microtronic Application Price 1991}}+{{:gepard:microtronic-91.jpg?nolink&220 |Microtronic Application Award 1991}}
 <WRAP clear/> <WRAP clear/>
-<wrap lo>Microtronic Application Price 1991</wrap>+<wrap lo>Award Microtronic Application 1991</wrap>
 </WRAP> </WRAP>
  
Line 540: Line 699:
  
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Development of a real-time test bed for car electronics for Volkswagen. A high-level simulation language allows for the very detailed description of the environment in which the gear control device operates; e.g. complex differential equation systems to describe the motor behaviour,  +Development of a real-time test bed for car electronics for Volkswagen. A high-level simulation language allows for the very detailed description of the environment in which the gear control device operates
-event driven models of cable breaks and other critical situations, as well as real-time interaction via mouse, keyboard, and analogue and digital signalsIt utilises high-performance real-time digital and analog IO-processing hardware for interaction between the simulation computer and the connected electronic device.+  * Complex differential equation systems describe the motor behaviour,  
 +  * Discrete event driven models introduce cable breaks and other critical situations, 
 +  * Real-time interaction using mouse, keyboard, analog and digital signals 
 +It utilizes high-performance real-time digital and analog IO-processing hardware for interaction between the simulation computer and the connected electronic device.
  
-The system reads the device's signals, simulates the motor's and the car's reaction by solving 50 complex differential equations more than hundred times a second, and feeds the external device again with analog and digital signals from simulated car sensors (Hardware-in-the-Loop). +The system reads the device's signals, simulates the motor's and the car's reaction by solving 50 complex differential equations more than hundred times a second, and feeds the device again with analog and digital signals from simulated car sensors (Hardware-in-the-Loop). 
         
 +<WRAP pagebreak />
 <wrap red>Major Achievement:</wrap> <wrap red>Major Achievement:</wrap>
-Before having this test bed available, engineers at Volkswagen had to perform about 30,000 km of partly dangerous test drives per year to test the gear control device under all possible stress and fault situations.    +Before having this test bed available, engineers at Volkswagen had to perform about 30,000 km of partly dangerous test drives per year to test the gear control device under all possible stress and fault situations - and again for every new component and device update.    
-With this powerful tool it became possible to fully automate these test procedures without further affecting the safety of test personnel. +With this powerful tool it became possible to automate test procedures, and perform more and systematic tests without affecting the safety of test drivers.
  
 ==== Real-time Controller Hardware for a Flight Centrifuge ==== ==== Real-time Controller Hardware for a Flight Centrifuge ====
Line 559: Line 721:
  
 <wrap red>Project:</wrap> <wrap red>Project:</wrap>
-FLIGHTSIM - Real-time Controller Hardware for a Flight Centrifuge+FLIGHTSIM - Real-time Control Hardware for a Flight Centrifuge
  
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
 AMST, Austria Metall Systemtechnik GmbH AMST, Austria Metall Systemtechnik GmbH
         
 +<WRAP clear></WRAP>
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Customer specific design and production of a high performance parallel computer system including fast analogue and digital IOs to control a large flight simulator centrifuge.+Customer specific design and production of a high performance parallel computer system including fast analog and digital IOs to control a large flight simulator centrifuge
 + 
 +The person sitting in the fast rotating device and exposed to very stressful acceleration is being protected by constantly monitoring her/his vital functions. The measurement data were sent to the control system, so that in case of a critical situation the centrifuge would react properly and slow down immediately in an appropriate mode.
  
-<WRAP clear></WRAP> 
 ==== Hardware-in-the-Loop Simulator for VOEST Alpine ==== ==== Hardware-in-the-Loop Simulator for VOEST Alpine ====
         
 <WRAP left 235px> <WRAP left 235px>
-{{:gepard:fabrik.jpg?nolink&220 |Real-time 'Dream-Fabric' Process Visualization}}+{{:gepard:fabrik.jpg?nolink&220 |Real-time 'Dream Factory' Process Visualization}}
 <WRAP clear></WRAP> <WRAP clear></WRAP>
    
Line 584: Line 748:
 VAI, VOEST Alpine Industrieanlagenbau GmbH VAI, VOEST Alpine Industrieanlagenbau GmbH
         
 +<WRAP clear></WRAP>
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Real-time simulator (SIMUL_TR) with a number of analogue and digital IOs that can be connected to various electronic devices of the customer. The device environment can be specified by a fully featured standard simulation language. +Real-time simulator (SIMUL_TR) with a number of analog and digital IOs that can be connected to various electronic devices and industrial controls of the customer. The environment can be specified by a fully featured standard simulation language.
- +
-<WRAP clear></WRAP>+
  
 <WRAP pagebreak /> <WRAP pagebreak />
- 
 ===== Environment Pollution Modelling ===== ===== Environment Pollution Modelling =====
  
Line 607: Line 769:
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
 ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment Protection) ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment Protection)
 +This project was realized by GEPARD founders shortly before starting the company. We did not manage the project, but contributed all of the algorithms, implementations, and all related software source code including a framework for distributed computation and display on a parallel computing hardware. 
         
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Simulation software for computation of SO<sub>2</sub> and NO<sub>x</sub> emissions caused by a single power plant. The simulation models and parameters have been deduced from more than 40.000 measurement data and implemented on a parallel computer.+Simulation software for computation of SO<sub>2</sub> and NO<sub>x</sub> imissions caused by a single power plant, implemented on a parallel computer. The simulation models and parameters have been optimized based on more than 40.000 measurement dataand computed immissions for the various weather situations.
  
 <WRAP clear></WRAP> <WRAP clear></WRAP>
Line 623: Line 786:
         
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-Feasibility study for aerosol transport simulation on a parallel computing platform.+Feasibility study and system design for aerosol transport simulation on a parallel computing platform.
  
 <WRAP pagebreak /> <WRAP pagebreak />
  
      
-==== Immission Simulator for the Austrian City of Salzburg ====+==== Immission Planning Tool for the Austrian City of Salzburg ====
         
 <WRAP left 235px> <WRAP left 235px>
Line 640: Line 803:
  
 <wrap red>Partner:</wrap> <wrap red>Partner:</wrap>
-ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environment Protection) in cooperation with Salzburg Urban Management+ÖBIG, Österreichisches Bundesinstitut für Gesundheitswesen und Umweltschutz (Austrian Federal Institute for Health and Environmental Protection) in cooperation with Salzburg Urban Management
  
 <WRAP clear/> <WRAP clear/>
 <wrap red>Description:</wrap> <wrap red>Description:</wrap>
-High performance simulator for emission control and immission forecasting for the Austrian city of Salzburg. The project required to simulate the impact on ground pollution of the emissions of approximately 600 single sources and of 1,000 area sources. The impact on 76,000 points of the city´s territory was calculated for each half an hour of the year, i.e. for 17,500 meteorological situations The computing had to be performed in two steps; first, to compute the base immission situation (data base) for a complete reference yearSecondly, it is frequently used for urban development decisions, to evaluate the expected impact of new emittents under selected meteorological conditions.+High performance simulator for emission control and immission forecasting for the Austrian city of Salzburg. The project required to simulate the impact of emissions of approximately 600 single sources and of 1000 area sources on ground pollutionTheir impact at 76000 points of the city´s territory was calculated for every half hour of a complete meteorological year, i.e. for 17500 meteorological situationsThe computing was performed in two steps
 +  * First, to compute the base immission situation (data base) for a complete reference year 
 +  * Secondly and interactively, to evaluate the expected impact of new emittent
         
 <wrap red>Major Achievement:</wrap> <wrap red>Major Achievement:</wrap>
-The estimated time for computing the immission data base on a standard mainframe computer in 1988 was 2.5 years. This could be reduced with the delivered simulator (parallel computing hardwareto about 14 days. The impact of new emittents in a specific meteorological situation could be computed within half a second. Due to this excellent performance, the system could be used as an interactive urban planning tool.+The estimated computing time for the immission data base on a standard mainframe computer in 1988 was 2.5 years. With the delivered simulator on fast parallel computing hardware, this could be reduced to about 14 days. The impact of new emittent could be computed within half a second. Due to this excellent performance, the system could be used as an interactive urban planning tool.
  
 <WRAP clear/> <WRAP clear/>
- 
  
  

gepard/projects.1457726096.txt.gz · Last modified: 2016-03-11 20:54 by jscheiber